Incomplete Data Decomposition for Classification

نویسنده

  • Rafal Latkowski
چکیده

In this paper we present a method of data decomposition to avoid the necessity of reasoning on data with missing attribute values. The original incomplete data is decomposed into data subsets without missing values. Next, methods for classifier induction are applied to such sets. Finally, a conflict resolving method is used to combine partial answers from classifiers to obtain final classification. We provide an empirical evaluation of the decomposition method with use of various decomposition criteria.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Decomposition for Incomplete Data

In this paper we present a method of data decomposition to avoid the necessity of reasoning on data with missing attribute values. The original incomplete data is decomposed into data subsets without missing values. Next, methods for classifier induction are applied to such sets. Finally, a conflict resolving method is used to combine partial answers from classifiers to obtain final classificat...

متن کامل

Feature Extraction of Visual Evoked Potentials Using Wavelet Transform and Singular Value Decomposition

Introduction: Brain visual evoked potential (VEP) signals are commonly known to be accompanied by high levels of background noise typically from the spontaneous background brain activity of electroencephalography (EEG) signals. Material and Methods: A model based on dyadic filter bank, discrete wavelet transform (DWT), and singular value decomposition (SVD) was developed to analyze the raw data...

متن کامل

Fast algorithms for Higher-order Singular Value Decomposition from incomplete data

Higher-order singular value decomposition (HOSVD) is an efficient way for data reduction and also eliciting intrinsic structure of multi-dimensional array data. It has been used in many applications, and some of them involve incomplete data. To obtain HOSVD of the data with missing values, one can first impute the missing entries through a certain tensor completion method and then perform HOSVD...

متن کامل

Data Decomposition and Decision Rule Joining for Classification of Data with Missing Values

In this paper we present a new approach to handling incomplete information and classifier complexity reduction. We describe a method, called DRJ, that performs data decomposition and decision rule joining to avoid the necessity of reasoning with missing attribute values. In the consequence more complex reasoning process is needed than in the case of known algorithms for induction of decision ru...

متن کامل

An Intelligent Machine Learning-Based Protection of AC Microgrids Using Dynamic Mode Decomposition

An intelligent strategy for the protection of AC microgrids is presented in this paper. This method was halving to an initial signal processing step and a machine learning-based forecasting step. The initial stage investigates currents and voltages with a window-based approach based on the dynamic decomposition method (DDM) and then involves the norms of the signals to the resultant DDM data. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002